

Signal survival probability for Dalitz rejection in PHENIX

K. Ozawa (ozawa@cns.s.u-tokyo.ac.jp)

- Simulation data
- Signal survival rate for Dalitz rejection

Simulation Data

1 These particles were generated using Exodus (made by R. Averbeck)

‡P, K, charged π , π 0, η , η '

Pt<10GeV/c with power low distribution.

|Rapidity| < 1.0.

Multiplicities of each particles were determined by dN_charge/dy(y=0) as input parameter.

‡ Vector mesons (ω , ρ , ϕ , J/ψ , Y)

Kinematics was same as other particle.

Generated one meson in each event.

Simulation Data (2)

- Particle decays were also simulated.
 - ‡ Dalitz decays of $\pi 0$, η , η'
 - ‡ Vector mesons $(\omega, \rho, \phi, J/\psi, Y)$ decays
- Output format is OSCAR format as PISA input format.
- Several kind of dN_charge/dy(y=0) data were generated.

dN/dy = 10, 100, 300, 650 Each data file contains 10000 events.

Dalitz rejection using invariant mass

- Dalitz rejection was applied for simulation data and the signal survival rate was calculated.
- Dalitz rejection scheme
 - 1 To determine a electron track is rejected or not,
 - ‡Invariant mass is calculated with all combination of the electron track and opposite sign electron.
 - ‡Opposite sign electron means miss identified pion and electrons from Dalitz decay. (γ conversion is not yet considered.)
 - ‡ If one of these invariant mass has less than cut value, this track is rejected.

Assumptions for the calculation

- Both electron and positron from vector meson decays going to the PHENIX acceptance (Pt > 200 MeV/c, $|\eta|$ < 0.33 and 2*($|\phi|$ < 90 degree)).
- 1 The rejection factor for pion.
 - In the PHENIX acceptance, rejection factor is 200.
 - 1 Out of the PHENIX acceptance, rejection factor is 100, for pions which has the momentum below 200 MeV/c.
 - 1 Out of the PHENIX acceptance, for pions which has the momentum above 200 MeV/c, we assumed no rejection.
- 1 Momentum of electron is required above 50MeV/c. Perfect (100%) efficiency for electron identification and tracking is assumed.

Signal survival probability

1 Signal survival rates for several kind of Dalitz rejection ratio

were calculated.

Dalitz rejection ratio were calculated as a fraction of Dalitz rejected events on the invariant mass histogram.

- It was depends on mass cut parameter.
- Calculations were done for Dalitz rejection ratio of 50%, 60%, 70%, 80%, 90%, 95%, and 100%.

Survival probability of ϕ is 70% for dN/dy = 650, when we keep 90% Dalitz rejection ratio.

Dalitz rejection using opening angle

- 1 Signal survival rates for opening angle cut.
- 1 Assumption is the same as invariant mass cut.
- opening angle cut parameter is 200 m radian, which corresponding to 90% rejection for Dalitz pair. (PHENIX technical note 391)

For opening angle cut, we have to change assumptions for calculation. We need more discussion and careful calculation.

Summary and plan

- Simulation data was generated for several kind of dN/dy using EXODUS.
- 1 Signal survival probabilities were calculated for several kinds of mass cut parameter and vector meson.
- Survival probability of ϕ is 70% for dN/dy = 650, when we keep 90% Dalitz rejection ratio.
- We have to apply
 - 1 Realistic pion miss identified efficiency.
 - 1 Realistic tracking efficiency and electron efficiency.
 - 1 Realistic Dalitz rejection scheme and dalitz rejection factor.
 - 1 Momentum and opening angle resolution
 - **1** Gamma conversion